tipos de conexiones

Thursday, October 26, 2006

tipos de conecciones de una cmputadora para la red


Descripción general de las redes LAN inalámbricasLas redes LAN inalámbricas de alta velocidad ofrecen las ventajas de la conectividad de red sin las limitaciones que supone estar atado a una ubicación o por cables. Existen numerosos escenarios en los que este hecho puede ser de interés; entre ellos, se pueden citar los siguientes.
Las conexiones inalámbricas pueden ampliar o sustituir una infraestructura con cables cuando es costoso o está prohibido tender cables. Las instalaciones temporales son un ejemplo de una situación en la que la red inalámbrica tiene sentido o incluso es necesaria. Algunos tipos de construcciones o algunas normativas de construcción pueden prohibir el uso de cableado, lo que convierte a las redes inalámbricas en una importante alternativa.
Y, por supuesto, el fenómeno asociado al término "inalámbrico", es decir, no tener que instalar más cables además de los de la red de telefonía y la red de alimentación eléctrica, ha pasado a ser el principal catalizador para las redes domésticas y la experiencia de conexión desde el hogar.
Los usuarios móviles, cuyo número crece día a día, son indudables candidatos a las redes LAN inalámbricas. El acceso portátil a las redes inalámbricas se realiza a través de equipos portátiles y NIC inalámbricas. Esto permite al usuario viajar a distintos lugares (salas de reunión, vestíbulos, salas de espera, cafeterías, aulas, etc.) sin perder el acceso a los datos de la red. Sin el acceso inalámbrico, el usuario tendría que llevar consigo pesados cables y disponer de conexiones de red.
Más allá del campo empresarial, el acceso a Internet e incluso a sitios corporativos podría estar disponible a través de zonas activas de redes inalámbricas públicas. Los aeropuertos, los restaurantes, las estaciones de tren y otras áreas comunes de las ciudades se pueden dotar del equipo necesario para ofrecer este servicio. Cuando un trabajador que está de viaje llega a su destino, quizás una reunión con un cliente en su oficina, se puede proporcionar acceso limitado al usuario a través de la red inalámbrica local. La red reconoce al usuario de la otra organización y crea una conexión que, a pesar de estar aislada de la red local de la empresa, proporciona acceso a Internet al visitante.
En todos estos escenarios, vale la pena destacar que las redes LAN inalámbricas actuales basadas en estándares funcionan a alta velocidad, la misma velocidad que se consideraba vanguardista para las redes con cable hace tan solo unos años. El acceso del usuario normalmente supera los 11 MB por segundo, de 30 a 100 veces más rápido que las tecnologías de acceso telefónico o de las redes WAN inalámbricas estándar. Este ancho de banda es sin duda adecuado para que el usuario obtenga una gran experiencia con varias aplicaciones o servicios a través de PC o dispositivos móviles. Además, los avances en curso de estos estándares inalámbricos continúa aumentando el ancho de banda, con velocidades de 22 MB.
Muchos proveedores de infraestructura están dotando de cable zonas públicas de todo el mundo. En los próximos 12 meses, la mayoría de los aeropuertos, centros de conferencias y muchos hoteles proporcionarán acceso de 802.11b a sus visitantes.
Comparación de las tecnologías de las redes LAN inalámbricasActualmente, destaca la implementación de dos soluciones LAN inalámbricas. Se trata de los estándares IEEE 802.11, principalmente 802.11b, y la solución propuesta por el grupo de trabajo HomeRF. Ambas soluciones no son interoperables entre sí ni con otras soluciones de redes LAN inalámbricas. Mientras que HomeRF está diseñado exclusivamente para el entorno doméstico, 802.11b se está implementando en hogares, en la pequeña y mediana empresa, en grandes organizaciones y en un número cada vez mayor de zonas activas de redes inalámbricas públicas. Algunos de los principales distribuidores de portátiles los equipa o tiene previsto equiparlos con tarjetas NIC 802.11b internas. A continuación se ofrece una comparación de las dos soluciones:

IEEE 802.11b
HomeRF
Principales fabricantes que lo han admitido
Cisco, Lucent, 3Com WECA
Apple, Compaq, HomeRF Working Group
Estado
Se incluye
Se incluye (baja velocidad)
Extensión
50-300 pies (15,24-91,44 cm)
150 pies (45,72 cm)
Velocidad
11 Mbps
1, 2, 10 Mbps
Aplicación
Hogares, oficinas pequeñas, campus, empresas
Hogar
Costo
75-150 dólares por tarjeta
85-129 dólares
Seguridad
WEP/802.1x
NWID/cifrado
Distribuidores
Más de 75
Menos de 30
Puntos de acceso públicos
Más de 350
Ninguno
Cuota de mercado de las tarjetas NIC inalámbricas
72%
21%
Microsoft considera que 802.11 es la solución más sólida y prometedora que se puede aplicar a múltiples entornos. Desde este punto, estas notas del producto se centran en la tecnología 802.11.
Topologías de redes LAN inalámbricasLas redes LAN inalámbricas se construyen utilizando dos topologías básicas. Para estas topologías se utilizan distintos términos, como administradas y no administradas, alojadas y par a par, e infraestructura y "ad hoc". En este documento se utilizarán los términos "infraestructura" y "ad hoc". Estos términos están relacionados, esencialmente, con las mismas distinciones básicas de topología.
Una topología de infraestructura es aquella que extiende una red LAN con cable existente para incorporar dispositivos inalámbricos mediante una estación base, denominada punto de acceso. El punto de acceso une la red LAN inalámbrica y la red LAN con cable y sirve de controlador central de la red LAN inalámbrica. El punto de acceso coordina la transmisión y recepción de múltiples dispositivos inalámbricos dentro de una extensión específica; la extensión y el número de dispositivos dependen del estándar de conexión inalámbrica que se utilice y del producto. En la modalidad de infraestructura, puede haber varios puntos de acceso para dar cobertura a una zona grande o un único punto de acceso para una zona pequeña, ya sea un hogar o un edificio pequeño.
Figura 1. Red de la modalidad de infraestructura
En una topología ad hoc, los propios dispositivos inalámbricos crean la red LAN y no existe ningún controlador central ni puntos de acceso. Cada dispositivo se comunica directamente con los demás dispositivos de la red, en lugar de pasar por un controlador central. Esta topología es práctica en lugares en los que pueden reunirse pequeños grupos de equipos que no necesitan acceso a otra red. Ejemplos de entornos en los que podrían utilizarse redes inalámbricas ad hoc serían un domicilio sin red con cable o una sala de conferencias donde los equipos se reúnen con regularidad para intercambiar ideas.
Figura 2. Red ad hoc
Por ejemplo, cuando se combinan con la nueva generación de software y soluciones par a par inteligentes actuales, estas redes inalámbricas ad hoc pueden permitir a los usuarios móviles colaborar, participar en juegos de equipo, transferir archivos o comunicarse de algún otro modo mediante sus PC o dispositivos inteligentes sin cables.
Descripción general del funcionamiento de la modalidad de infraestructuraEl portátil o dispositivo inteligente, denominado "estación" en el ámbito de las redes LAN inalámbricas, primero debe identificar los puntos de acceso y las redes disponibles. Este proceso se lleva a cabo mediante el control de las tramas de señalización procedentes de los puntos de acceso que se anuncian a sí mismos o mediante el sondeo activo de una red específica con tramas de sondeo.
La estación elige una red entre las que están disponibles e inicia un proceso de autenticación con el punto de acceso. Una vez que el punto de acceso y la estación se han verificado mutuamente, comienza el proceso de asociación.
La asociación permite que el punto de acceso y la estación intercambien información y datos de capacidad. El punto de acceso puede utilizar esta información y compartirla con otros puntos de acceso de la red para diseminar la información de la ubicación actual de la estación en la red. La estación sólo puede transmitir o recibir tramas en la red después de que haya finalizado la asociación.
En la modalidad de infraestructura, todo el tráfico de red procedente de las estaciones inalámbricas pasa por un punto de acceso para poder llegar a su destino en la red LAN con cable o inalámbrica.
El acceso a la red se administra mediante un protocolo que detecta las portadoras y evita las colisiones. Las estaciones se mantienen a la escucha de las transmisiones de datos durante un período de tiempo especificado antes de intentar transmitir (ésta es la parte del protocolo que detecta las portadoras). Antes de transmitir, la estación debe esperar durante un período de tiempo específico después de que la red está despejada. Esta demora, junto con la transmisión por parte de la estación receptora de una confirmación de recepción correcta, representan la parte del protocolo que evita las colisiones. Observe que, en la modalidad de infraestructura, el emisor o el receptor es siempre el punto de acceso.
Dado que es posible que algunas estaciones no se escuchen mutuamente, aunque ambas estén dentro del alcance del punto de acceso, se toman medidas especiales para evitar las colisiones. Entre ellas, se incluye una clase de intercambio de reserva que puede tener lugar antes de transmitir un paquete mediante un intercambio de tramas "petición para emitir" y "listo para emitir", y un vector de asignación de red que se mantiene en cada estación de la red. Incluso aunque una estación no pueda oír la transmisión de la otra estación, oirá la transmisión de "listo para emitir" desde el punto de acceso y puede evitar transmitir durante ese intervalo.
El proceso de movilidad de un punto de acceso a otro no está completamente definido en el estándar. Sin embargo, la señalización y el sondeo que se utilizan para buscar puntos de acceso y un proceso de reasociación que permite a la estación asociarse a un punto de acceso diferente, junto con protocolos específicos de otros fabricantes entre puntos de acceso, proporcionan una transición fluida.
La sincronización entre las estaciones de la red se controla mediante las tramas de señalización periódicas enviadas por el punto de acceso. Estas tramas contienen el valor de reloj del punto de acceso en el momento de la transmisión, por lo que sirve para comprobar la evolución en la estación receptora. La sincronización es necesaria por varias razones relacionadas con los protocolos y esquemas de modulación de las conexiones inalámbricas.
Descripción general del funcionamiento de la modalidad ad hoc
Después de explicar el funcionamiento básico de la modalidad de infraestructura, del modo ad hoc se puede decir que no tiene punto de acceso. En esta red sólo hay dispositivos inalámbricos presentes. Muchas de las operaciones que controlaba el punto de acceso, como la señalización y la sincronización, son controladas por una estación. La red ad hoc no disfruta todavía de algunos avances como retransmitir tramas entre dos estaciones que no se oyen mutuamente.
ROUTER
Para montar una red son fundamentales los cables que unen los PC's con el HUB ó Switch (ROUTER también). Por eso es importante tener en cuenta el tipo de cable el conector y el orden de los hilos.
* Cables RJ45


Normalmente, para redes de 10 Mb/s se utiliza cable par trenzado UTP categoría 5 que consta de 8 hilos que vienen colocados en pares de 2.
Los pares internamente vienen de la siguiente forma:
Primer par de hilos: Blanco-Naranja. Naranja.
Segundo par de hilos: Blanco-Verde. Azul.
Tercer par de hilos: Blanco-Azul. Verde.
Cuarto par de hilos: Blanco-Marrón. Marrón

Si queremos hacer un cable con las menores interferencias posibles para redes 10~100Mb/s. Puede seguirse el siguiente orden:
CONEXIÓN DE PC A ROUTER AL MÓDEM DSL
Conector 1.
1.- Blanco-Naranja 2.- Naranja 3.- Blanco-Verde 4.-Azul 5.-Blanco-azul 6.-Verde 7.-Blanco-Marron 8.-Marron
Conector 2.
1.- Blanco-Naranja 2.- Naranja 3.- Blanco-Verde 4.- Azul 5.- Blanco-Azul 6.- Verde 7.- Blanco-Marrón 8.- Marrón
CONEXIÓN CROSSOVER
Conector 1.
1.- Blanco-Verde 2.- Verde 3.- Blanco-Naranja4.-Azul 5.-Blanco-azul 6.-Naranja 7.-Blanco-Marron 8.-Marron
Conector 2.
1.- Blanco-Verde 2.- Verde 3.- Blanco-Naranja 4.- Azul 5.- Blanco-Azul 6.- Naranja 7.- Blanco-Marrón 8.- Marrón
Armado de Cables UTP: Recto y Cruzado
Materiales Necesarios:
Pinza para cable UTP
Dos Fichas RJ45
Cable UTP
Para que todos los cables funcionen en cualquier red, se sigue un estándar para hacer las conexiones.
Los dos extremos del cable llevan un conector RJ45 con los colores en el orden indicado
CRUZADO:
Si solo se quieren conectar 2 PC's, existe la posibilidad de colocar el orden de los colores de tal manera que no sea necesaria la presencia de un HUB.
Es muy importante recordar que cuando se conectan computadoras en red no solo se las esta conectando físicamente, sino que también se las conecta eléctricamente. Una descarga de voltaje puede dañar una o varias maquinas. Es por esto que es de suma importancia aplicar una buena tierra física a la instalación eléctrica y así evitarse sorpresas.
DNS(Sistema de Nombres de Dominio)
El DNS (Domain Name System) es un conjunto de protocolos y servicios (base de datos distribuida) que permite a los usuarios utilizar nombres en vez de tener que recordar direcciones IP numéricas. Ésta es ciertamente la función más conocida de los protocolos DNS: la asignación de nombres a direcciones IP. Por ejemplo, si la dirección IP del sitio FTP de prox.ve es 200.64.128.4, la mayoría de la gente llega a este equipo especificando ftp.prox.ve y no la dirección IP. Además de ser más fácil de recordar, el nombre es más fiable. La dirección numérica podría cambiar por muchas razones, sin que tenga que cambiar el nombre.
Inicialmente, el DNS nació de la necesidad de recordar fácilmente los nombres de todos los servidores conectados a Internet. En un inicio, SRI (ahora SRI International) alojaba un archivo llamado HOSTS.TXT que contenía todos los nombres de dominio conocidos. (técnicamente, este archivo aun existe - la mayoría de los sistemas operativos actuales todavía pueden ser configurados para chequear su archivo hosts).
El crecimiento explosivo de la red causó que el sistema de nombres centralizado en el archivo HOSTS.TXT resultara impráctico y en 1983, Paul Mockapetris publicó los RFCs 882 y 883 definiendo lo que hoy en día ha evolucionado al DNS moderno. (Estos RFCs han quedado obsoletos por la publicación en 1987 de los RFCs 1034 y 1035).
Como trabaja DNS en teoría
Componentes
Para la operación práctica del sistema DNS se utilizan tres componentes principales:
· Los Clientes DNS (resolvers), un programa cliente DNS que se ejecuta en la computadora del usuario y que genera peticiones DNS de resolución de nombres a un servidor DNS (de la forma: ¿Qué dirección IP corresponde a nombre.dominio?);
· Los Servidores DNS (name servers), que contestan las peticiones de los clientes, los servidores recursivos tienen la capacidad de reenviar la petición a otro servidor si no disponen de la dirección solicitada;
· Y las Zonas de autoridad' (authoritative DNS server), porciones del espacio de nombres de dominio que manejan las respuestas a las peticiones de los clientes. La zona de autoridad abarcan al menos un dominio e incluyen subdominios, pero estos generalmente se delegan a otros servidores.
Entendiendo las partes de un nombre de dominio
Un nombre de dominio usualmente consiste en dos o más partes (técnicamente etiquetas), separadas por puntos. Por ejemplo, www.mahomedalid.org o es.Wikipedia.org
· A la ubicada más a la derecha se llama dominios de primer nivel. Como org en www.mahomedalid.org o es.Wikipedia.org
· Cada etiqueta a la izquierda especifica una subdivisión o subdominio. Nótese que "subdominio" expresa dependencia relativa, no dependencia absoluta.
En teoría, esta subdivisión puede ser de 127 niveles, y cada etiqueta contiene cerca de 63 caracteres, tantos como para que el nombre del dominio total no exceda los 255 caracteres, aunque en la práctica es mucho menor que eso.
· Finalmente, la parte más a la izquierda del dominio (usualmente) expresa el nombre de la máquina (hostname). El resto del dominio simplemente especifica la manera de crear una ruta lógica a la información requerida; el nombre de la máquina es el sistema destino para el cual cada dirección IP esta dedicada. Por ejemplo, el dominio es.Wikipedia.org tiene el nombre de la máquina "es".
El DNS consiste en un conjunto jerárquico de servidores DNS. Cada dominio o subdominio tiene una o más zonas de autoridad que publican la información acerca del dominio y los nombres de servicios de cualquier dominio incluido. La jerarquía de las zonas de autoridad coincide con la jerarquía de los dominios. Al inicio de esa jerarquía se encuentra los servidores raíz: los servidores que responden cuando se busca resolver un dominio de primer nivel.
Antecedentes
En el pasado había dos especificaciones principales de terminación de cableado: Los cables de datos y por otro lado, los cables de voz. En la actualidad, en el mundo de los sistemas de cableado estrucuturado existen muchos diferentes tipos de servicios (e.g. voz , datos, video, monitoreo, control de dispositivos, etc.) que pueden correr sobre un mismo tipo de cable.
Introducción
El estándar más conocido de cableado estructurado en el mundo está definido por la EIA/TIA [Electronics Industries Association/Telecomunications Industries Association] de Estados Unidos), y especifica el cableado estructurado sobre cable de par trenzado UTP de categoria 5, el estándar 568A. Existe otro estándar producido por AT&T muchos antes de que la EIA/TIA fuera creada en 1985, el 258A, pero ahora conocido bajo el nombre de EIA/TIA 568B.
Qué es el 568
En el mundo de los sistemas de cableado estructurado el número criptico 568 al orden en que los hilos individuales dentro del cable CAT 5 están terminados.
Organizaciones de estándares de cableado
Hay muchas organizaciones involucradas en el cableado estructurado en el mundo. En Estados Unidos es la ANSI, Internacionalmente es la ISO (International Standards Organization). El propósito de las organizaciones de estándares es formular un conjunto de reglas comunes para todos en la industria, en el caso del cableado estructurado para própositos comerciales es proveer un conjunto estándar de reglas que permitan el soporte de múltiples marcas o fabricantes. Los estándares 568 son actualmente desarrollados por la TIA (Telecommunications Industry Association) and the EIA (Electronics Industry Association) en Estados Unidos. Estos estándares han sido adoptados alrededor del mundo por otras organizaciones. En 1985 muchas compañías de la industria de las telecomunicaciones estaban desconcertadas por la falta de estándares de cableado. Entonces la EIA se puso a desarrollar un estándar para este propósito. el primer borrador (draft) del estándar no fue liberado sino hasta julio de 1991, y se le fue dado el nombre de EIA/TIA-568. en 1994 el estándar fue renombrado a TIA/EIA 568A, el existente estándar de AT&T 258A fue incluido y referenciado como TIA/EIA-568B. Estos estándares de facto se hicieron populares y ampliamente usados, despues fueron adoptados por organismos internacionales como el ISO/IEC 11801:1995.
Internacionalmente los estandares de cableado estan definidos en ISO/IEC IS 11801, en los Estados Unidos son definidos por la EIA/TIA, en Canadá por la CSA T529 y en otros organismos de otros países.
Alcance del estándar TIA/EIA-568A
Requerimientos mínimos para el cableado de telecomunicaciones dentro de un ambiente de oficinas.
Topología recomendada y distancias
Parámetros del medio de transmisión el cual determina el desempeño
asignaciones de conectores y guía para asegurar la interoperatibilidad
La vida útil de los sistemas de cableado de telecomunicaciones han estado en desafuero de 10 aÑos.
Los 6 subsistemas del sistema de cableado estructurado
1. Entrada al edificio:
La entrada a las servicios del edificio es el punto en el cual el cableado externo hace interfaz con el cableado de la dorsal dentro del edificio. Este punto consiste en la entrada de los servicios de telecomunicaciones al edificio (acometidas), incluyendo el punto de entrada a través de la pared y hasta el cuarto o espacio de entrada. Los requerimientos de la inteface de red están definidos en el estándar TIA/EIA-569A
2. Cuarto de equipos
El cuarto de equipos es un espacio centralizado dentro del edificio donde se albergan los equipos de red (enrutadores, switches, mux, dtu), equipos de datos (PBXs,..), video, etc. Los aspectos de diseño del cuarto de equipos está especificado en el estándar TIA/EIA 569A.
3. Cableado de la dorsal (backbone)
El cableado de la dorsal permite la interconexión entre los gabinetes de telecomunicaciones, cuartos de telecomunicaciones y los servicios de la entrada. Consiste de cables de dorsalm cross-connects principales y secundarios, terminaciones mecánicas y regletas o jumpers usados conexión dorsal-a-dorsal. Esto incluye:
» Conexión vertical entre pisos (risers)» Cables entre un cuarto de equipos y cable de entrada a los servicios del edificio.» Cables entre edificios.

Tipo de cables requeridos para la Dorsal
Tipo de Cable
Distancias máximas de la dorsal
100 ohm UTP (24 or 22 AWG)
800 metros (Voz)
150 ohm STP
90 metros (Datos)
Fibra Multimodo 62.5/125 µm
2,000 metros
fibra Monomodo 8.3/125 µm
3,000 metros
4. Gabinete o rack de Telecomunicaciones
El rack de telecomunicaciones es el area dentro de un edificio que alberga el equipo del sistema de cableado de telecomunicaciones. Este incluye las terminaciones mecánicas y/o cross-conects para el sistema de cableado a la dorsal y horizontal.
5. Cableado horizontal
El sistema de cableado horizontal se extiende desde el área de trabajo de telecomunicationes al rack de telecomunicaciones y consiste de lo siguiente: » Cableado horizintal » Enchufe de telecomunicaciones » Terminaciones de cable (asignaciones de guías del conector modular RJ-45) » Conexiones de transición Tres tipos de medios son reconocidos para el cableado horizontal, cada uno debe de tener una extensión máxima de 90 metros: » Cable UTP 100-ohm, 4-pares, (24 AWG solido) » Cable 150-ohm STP, 2-pares » Fibra óptica 62.5/125-µm, 2 fibras
6. Area de trabajo
Los componentes del área de trabajo se extienden desde el enchufe de telecomunicaciones a los dispositivos o estaciónes de trabajo.
Los componentes del área de trabajo son los siguientes: » Dispositivos: computadoras, terminales, teléfonos, etc. » Cables de parcheo: cables modulares, cables adaptadores/conversores, jumpers de fibra, etc. » Adaptadores - deberán ser externos al enchufe de telecomununicaciones.

Varios tipos de enchufes (oulets) de pared para telecomunicaciones
Racks o gabinetes de telecomunicaciones

Paneles de parcheo (patch panel)

Tableros de conexión telefónica (s66)
Asignaciones del conector modular RJ-45 de 8 hilos, que forma parte del cableado horizontal.
El conector RJ45 o RJ48 de 8 hilos/posiciones es el más empleado para aplicaciones de redes (El término RJ viene de Registered Jack). También existen Jacks, de 6 posiciones y de 4 posiciones (e.g. el jack telefónico de 4 hilos conocido como RJ11). Los conectores de 8 posiciones están numerados del 1 a 8, de izquierda a derecha, cuando el conector es visto desde la parte posterior al ganchito (la parte plana de los contactos), tal como se muestra en las figuras.


Como ya vimos, dos esquemas de asignación de pins están definidos por la EIA/TIA, el 568A y el 568B. Ambos esquemas son casi identicos, excepto que los pares 2 y 3, están al reves. Cualquier configuración puede ser usada para ISDN (Integrated Services Digital Network) y apliciones de alta velocidad. Las Categorias de cables tranmisión 3,4, 5, 5e y 6 son sólo aplicables a este tipo de grupos de pares. Para aplicaciones de RED, (e.g. Ethernet 10/100BaseT, o Token Ring) solo son usados dos pares, los 2 pares restantes se utilizarian para otro tipo de aplicaciones, voz, por ejemplo.

¿Como leer un cable modular?Alinear los dos extremos del conector, con los dos contactos hacia el frente y compare los colores de izquierda a derecha. Si los colores aparecen en el mismo orden en mabos conectores, entonces, el cable es "directo", o 1 a 1. Si los colores del segundo conector aparecen en sentido inverso al del primero, entonces, el cable es "cruzado". Un cable directo sirve para conectar una computadora [tarjeta de red] a un Hub, o Una computadora a un Switch. Mientras que un cable cruzado sirve para conectar dos PCs entre sí; dos hubs o switches entre sí. Algunos hubs o switches pueden tener enchufes que cambien de directo a cruzado mediante un interruptor, otros tienen un enchufe especial para ese propósito marcado con "X".


Una Red es una manera de conectar varias computadoras entre sí, compartiendo sus recursos e información y estando conscientes una de otra. Cuando las PC´s comenzaron a entrar en el área de los negocios, el conectar dos PC´s no traía ventajas, pero ésto desapareció cuando se empezó a crear los sistemas operativos y el Software multiusuario. Según el lugar y el espacio que ocupen, las redes, se pueden clasificar en dos tipos:
1.Redes LAN (Local Area Network) o Redes de área local2.Redes WAN (Wide Area Network) o Redes de área amplia
LAN (Local Area Networks)Es un tipo de red que se expande en un área relativamente pequeña. Éstas se encuentran comúnmente dentro de una edificación o un conjunto de edificaciones que estén contiguos. Así mismo, una LAN puede estar conectada con otras LAN's a cualquier distancia por medio de línea telefónica y ondas de radio.
Pueden ser desde 2 computadoras,hasta cientos de ellas. Todas se conectan entre sí por varios medios y topología, a la computadora(s) que se encarga de llevar el control de la red es llamada "servidor" y a las computadoras que dependen del servidor, se les llama "nodos" o "estaciones de trabajo".
Los nodos de una red pueden ser PC´s que cuentan con su propio CPU, disco duro y software y tienen la capacidad de conectarse a la red en un momento dado; o pueden ser PC´s sin CPU o disco duro y son llamadas "terminales tontas", las cuales tienen que estar conectadas a la red para su funcionamiento.
Las LANs son capaces de transmitir datos a velocidades muy rápidas, algunas inclusive más rápido que por línea telefónica; pero las distancias son limitadas.
WAN (Wide Area Networks)
Es una red comúnmente compuesta por varias LANs interconectadas y se encuentran en una amplia área geográfica. Estas LAN's que componen la WAN se encuentran interconectadas por medio de lineas de teléfono, fibra óptica o por enlaces aéreos como satélites.
Entre las WAN's mas grandes se encuentran: la ARPANET, que fue creada por la Secretaría de Defensa de los Estados Unidos y se convirtió en lo que es actualmente la WAN mundial: INTERNET, a la cual se conectan actualmente miles de redes universitarias, de gobierno, corporativas y de investigación.
De lo que se compone una red en forma básica es lo siguiente:
Servidor (server)
El servidor es la máquina principal de la red, la que se encarga de administrar los recursos de la red y el flujo de la información. Muchos de los servidores son "dedicados" , es decir, están realizando tareas específicas, por ejemplo , un servidor de impresión solo para imprimir; un servidor de comunicaciones, sólo para controlar el flujo de los datos...etc. Para que una máquina sea un servidor, es necesario que sea una computadora de alto rendimiento en cuanto a velocidad y procesamiento, y gran capacidad en disco duro u otros medios de almacenamiento.
Estación de trabajo (Workstation)
Es una computadora que se encuentra conectada físicamente al servidor por medio de algún tipo de cable. Muchas de las veces esta computadora ejecuta su propio sistema operativo y ya dentro, se añade al ambiente de la red.
Sistema Operativo de Red
Es el sistema (Software) que se encarga de administrar y controlar en forma general la red. Para ésto tiene que ser un Sistema Operativo Multiusuario, como por ejemplo: Unix, Netware de Novell, Windows NT, etc.
Recursos a compartir
Al hablar de los recursos a compartir , estamos hablando de todos aquellos dispositivos de Hardware que tienen un alto costo y que son de alta tecnología. En éstos casos los más comunes son las impresoras, en sus diferentes tipos: Láser, de color, plotters, etc. Además pueden compartirse componentes de programación o software, de este modo no es necesario instalar la programación utilizada en cada una de las estaciones de la red la misma puede ser compartida utilizandola desde un servidor de archivos o file server.
Hardware de Red
Son aquellos dispositivos que se utilizan para interconectar a los componentes de la red, serían básicamente las tarjetas de red (NIC-> Network Interface Cards) y el cableado entre servidores y estaciones de trabajo, así como los cables para conectar los periféricos.
La transmisión de datos en las redes, puede ser por dos medios:1. Terrestres: Son limitados y transmiten la señal por un conductor físico. 2. Aéreos: Son "ilimitados" en cierta forma y transmiten y reciben las señales electromagnéticas por microondas o rayo láser.
Terrestres
a) Cable par trenzado (twisted pair): Es el que comúnmente se utiliza para los cables de teléfonos, consta de 4 pares de filamentos de cobre, cubiertos cada uno por plástico aislante y entrelazados el uno con el otro, existen dos tipos de cable par trenzado: el "blindado" , que se utiliza en conexiones de redes y estaciones de trabajo y el "no blindado", que se utiliza en las líneas telefónicas y protege muy poco o casi nada de las interferencias.b) Cable coaxial: Este tipo de cable es muy popular en las redes, debido a su poca susceptibilidad de interferencia y por su gran ancho de banda, los datos son transmitidos por dentro del cable en un ambiente completamente cerrado, una pantalla sólida , bajo una cubierta exterior. Existen varios tipos de cables coaxiales, cada uno para un propósito diferente.c) Fibra óptica: Es un filamento de vidrio sumamente delgado diseñado para la transmisión de la luz. Las fibras ópticas poseen enormes capacidades de transmisión, del orden de miles de millones de bits por segundo. Además de que los impulsos luminosos no son afectados por interferencias causadas por la radiación aleatoria del ambiente. Actualmente la fibra óptica está remplazando en grandes cantidades a los cables comunes de cobre.
La topología de una red , es el patrón de interconexión entre nodos y servidor, existe tanto la topología lógica (la forma en que es regulado el flujo de los datos) ,como la topología física ( la distribución física del cableado de la red). Las topologías físicas de red más comunes son:
1. Estrella2. Bus lineal3. Anillo
Topología de estrella
Red de comunicaciones en que la que todas las terminales están conectadas a un núcleo central, si una de las computadoras no funciona, ésto no afecta a las demás, siempre y cuando el "servidor" no esté caído.
Topología Bus Lineal
Todas las computadoras están conectadas a un cable central, llamado el "bus" o "backbone". Las redes de bus lineal son de las más fáciles de instalar y son relativamente baratas.
Topología de anillo
Todas las computadoras o nodos están conectados el uno con el otro, formando una cadena o círculo cerrado.

Entremos en materia:
INTRODUCCIÓN:
Una de las mejores definiciones sobre la naturaleza de una red es la de identificarla como un sistema de comunicaciones entre computadoras. Como tal, consta de un soporte físico que abarca cableado y placas adicionales en las computadoras, y un conjunto de programas que forma el sistema operativo de red.La diferencia sustancial entre un sistema basado en una mini computadora o gran computadora (mainframe) y una red es la distribución de la capacidad de procesamiento . En el primer caso, se tiene un poderoso procesador central, también denominado "host", y terminales "bobas" que funcionan como entrada y salida de datos pero son incapaces de procesar información o de funcionar por cuenta propia. En el segundo caso, los miembros de la red son computadoras que trabajan por cuenta propia salvo cuando necesitan un recurso accesible por red.
TIPOS DE REDES:
Por la relación que hay entre sus miembros, las redes se subdividen en dos grandes grupos: las redes con servidor y las entre pares.En una "red basada en un servidor" (Server-based), los recursos a compartir se centralizan en una máquina denominada "servidor "(Server). Las demás máquinas, denominadas "estaciones de trabajo" (workstations), sólo pueden usar recursos propios o del Server. A su vez, las redes basadas en servidor, aceptan dos subclases: con servidor "dedicado" o "no dedicado". En el segundo, la máquina que funciona como servidor, lo hace también como estación de trabajo.En una "red entre pares "(peer-to-peer) cualquier estación puede ofrecer recursos para compartir. Las que no ofrecen recursos se llaman "clientes" (client) y las que lo hacen "anfitrión/cliente" (host/client).Las ventajas y desventajas de un tipo de red frente al otro, son los derivados de la centralización de recursos. En general, las redes importantes tienden a ser basadas en servidores dedicados, los que presentan las siguientes ventajas:un servidor dedicado tiene más capacidad de trabajo que una máquina que opera además como estación. ofrece más seguridad contra accesos no autorizados tener la información centralizada que distribuída.las redes que ofrecen mayor seguridad contra pérdidas accidentales de información trabajan con servidores dedicados. en las redes importantes, hay un "supervisor o administador del sistema" cuyas tareas se facilitan mucho si la red está centralizada.es más práctico para hacer actualizaciones de programas y copias de respaldo la centralización de archivos.Cuando una estación de una red entre pares ofrece recursos para compartir, le queda menos memoria libre que cuando sólo usa los de otras estaciones. La diferencia puede ser tal que no se pueda cargar el programa de aplicación que debería ejecutarse en la estación. no se corre el riesgo de que una estación que se cuelgue, cuelgue el sistema. las redes en las que hay terminales corriendo sistemas operativos diferentes, tienen servidores dedicados. Las redes entre pares suelen presentar las siguientes ventajas: Sistema operativo de menor costo. El sistema de impresoras es descentralizado, lo que evita la disyuntiva entre imprimir todo en el server (y caminar hasta él a buscar el trabajo) y dotar a cada estación de trabajo de una impresora (solución cara). Es mucho más fácil reconfigurar este tipo de sistemas. Si bien las diferencias entre ambas son notables, en la práctica tienden a disminuir pues cada una de ellas toma características de la otra. En efecto, hay productos que permiten que en sistemas con servidores, algunas estaciones puedan compartir sus impresoras. NetWare lo incorpora a partir de la versión 2.15 Update con el nombre de PSERVER. También es posible tener más de un servidor en la red. Por otra parte, a medida que se le agregan máquinas a una red entre pares, surge sóla la idea de ir dejando alguna dedicada a servir la red, con lo que aunque el sistema operativo sea entre pares, funcionaría como una red basada en server. Otro punto a tener en cuenta es que a medida que se agregan estaciones a la red, aparecen nuevos usuarios y se llega a un punto en el que un administrador del sistema es imprescindible.
SISTEMA OPERATIVO DE RED:
El sistema operativo es el programa a través del cual los demás programas usan los recursos de la red. En los sistemas entre pares, las estaciones trabajan bajo DOS y el sistema operativo es un residente que funciona como una extensión del mismo; el residente es de mayor tamaño si la estación funciona también como anfitrión. Casi siempre, los sistemas operativos entre pares se basan en DOS 3.1 (o superior) y NETBIOS. En los sistemas basados en servidores, la situación es distinta en el servidor que en las estaciones. El sistema operativo del servidor puede ser especial (caso del NetWare) o trabajar como una extensión de otro sistema operativo (por ej: el LAN Manager trabaja bajo OS/2). Generalmente el servidor no trabaja bajo DOS ya que el DOS no es ni multiusuario ni multiproceso y está limitado a manejar 640K de RAM. Esto es consecuencia de no usar al 80286 (o superiores) en modo protegido. Las estaciones trabajan en forma similar a los sistemas entre pares con la salvedad de que no pueden ofrecer recursos para compartir. Lo importante es que desde las estaciones el server se vea igual que un disco local bajo DOS. En el caso de sistemas mezclados (PCs con otros tipos de máquinas), cada máquina debe correr su propio sistema operativo y, además, ver al server como si fuera parte de ella.
Ventajas aportadas por el uso de una red:
Mantener bases de datos actualizadas instantáneamente y accesibles desde distintos puntos.Facilitar la transferencia de archivos entre miembros de un grupo de trabajo.Compartir periféricos caros (impresoras laser, plotters, discos ópticos, etc)Bajar el costo del software comprando licencias de uso múltiple en vez de muchas individuales.Mantener versiones actualizadas y coherentes del software.Facilitar la copia de respaldo de los datos.Correo electrónico.Comunicarse con otras redes (bridge).Conectarse con minis y mainframes (gateway).Mantener usuarios remotos via modem.Si las estaciones que forman la red carecen de diskettera, además se puede:Evitar el uso ilegal del software.Evitar el ingreso de virus.Evitar el hurto de información.Facilita el acceso al sistema para usuarios inexpertos, ya que ingresa directamente a ejecutar sus aplicaciones.
TOPOLOGIA DE LAS REDES LAN:
La topología de la LAN la define el hardware. Hay tres topologías básicas:
1) Estrella (star)
Se la llama así pues hay un centro denominado hub hacia el cual convergen todas las líneas de comunicación. Cada máquina tiene un enlace exclusivo con el hub. Los sistemas host - terminales también usan una topología estrella, con el host en el centro, pero se diferencian por la forma de comunicación. En las LANs, el hub es un dispositivo que, sea activo o pasivo, permite que todas las estaciones reciban la transmisión de una; en los sistemas con host, sólo el host recibe. En una red, la comunicación entre dos estaciones es directa; en un sistema con host, una terminal se comunica con el host y el host con la otra. figura 1:2) Bus:En esta topología hay un cable que recorre todas las máquinas sin formar caminos cerrados ni tener bifurcaciones. Eléctricamente, un bus equivale a un nodo pues los transceptores de todas las máquinas quedan conectados en paralelo. A los efectos de mantener la impedancia constante en el cableado de la red, se deben conectar dos "terminadores" en ambos extremos del cableado de la misma. Figura 2:3) Anillo:En este caso, las líneas de comunicación forman un camino cerrado. La información generalmente recorre el anillo en forma unidireccional, cada máquina recibe la información de la máquina previa, la analiza, y si no es para ella, la retransmite a la siguiente. Figura 3:
PROTOLOCOS DE ARBITRAJE
Se denomina así al acceso a la posibilidad de transmitir datos por la red; hay dos formas básicas : CSMA/CD (Carrier Sense Multiple Access with Collission Detection):En este caso, cualquier máquina puede iniciar una comunicación (acceso múltiple) con sólo verificar que no haya ninguna otra comunicación en el cable ; para ello detecta la presencia de portadora (Carrier Sense).(fase a).La información que se está transmitiendo tarda un cierto tiempo en recorrer la red. Una estación a la que todavía no le llegaron los primeros bits podría iniciar una transmisión basada en que en ese momento no hay señal.(fase b). Un instante después le empezarán a llegar dichos bits, pero como la transmisión ya había comenzado, las estaciones comprendidas entre ambas máquinas recibirán la suma de las dos señales.(fase c). Esto se denomina "colisión". El segundo transmisor debe seguir transmitiendo un tiempo suficiente como para que el primero se entere de la colisión.(fase d). Esta acción recibe el nombre de atascamiento (jamming).
ANALISIS DE UNA COLISION
Figura 4:
El peor caso de colisión se produce cuando las estaciones están a la mayor distancia posible y la segunda comienza a transmitir justo antes de recibir el primer bit, pues al tiempo de propagación de la señal de la primera estación a la segunda, hay que sumarle el de propagación del atascamiento de la segunda a la primera. La suma de esos tiempos define la "ventana de colisión". Para asegurarse la ausencia de colisiones indetectadas, se deben cumplir dos condiciones: 1. la transmisión debe durar más que la ventana de colisiones. Por ej: en Ethernet el paquete mínimo es de 46 bytes y el máximo de 1500 bytes.2. la estación transmisora debe chequear la ausencia de colisiones durante ese tiempo; después no es necesario.Una vez detectada la colisión, ambas estaciones deben dejar pasar un tiempo determinado cuasialeatoriamente antes de intentar retransmitir. Si se produce otra colisión, se reintenta esperando un tiempo mayor. El tiempo promedio de demora se duplica con cada reintento. Puede haber colisiones múltiples. Es posible que una estación no pueda comunicarse durante mucho tiempo debido a una sucesión de colisiones.
Token passing:
Este sistema evita la colisión pues limita el derecho a transmitir a una máquina. Esa máquina se dice que tiene el token (cospel). El token va pasando a intervalos fijos de una máquina a otra. La circulación del token de una máquina a la siguiente hace que, desde el punto de vista lógico, toda red basada en tokens sea un anillo. Debe notarse que un anillo lógico no implica un anillo físico. En efecto, si bien IEEE 802.5 emplea un anillo físico, IEEE 802.4 especifica un bus y ARCnet usa una estrella.Por la red circulan dos tipos de mensajes: los "tokens" y los "frames".Un token indica que la red está disponible. El token incluye información de prioridad, de forma tal que el control de la red lo pueda tomar sólo una estación con igual o mayor prioridad. Hay un timer que asegura que ninguna estación retenga el token demasiado tiempo. Un frame (marco) es un mensaje que contiene (entre otras cosas) la información que se quiere transmitir, las direcciones de las estaciones transmisora y receptora, y un CRC para manejo de errores.
Comparación entre CSMA/CD y Token passing:
Ambos tipos de protocolo tienen uso generalizado. La ventaja del primero es que permite mayor performance, especialmente cuando hay pocas colisiones. Esto ocurre si la mayoría de las transmisiones se originan en la misma máquina o si hay relativamente poco tráfico en la red. Una ventaja del segundo es que puede asegurarse que, independientemente del tráfico en la red, una máquina va a poder transmitir antes de un tiempo predeterminado. Esto tiene dos efectos positivos: uno es que la performance de la red no disminuye tanto al aumentar el tráfico; el otro (aunque su uso es menor) es en sistemas de control donde es importante asegurarse de que un mensaje llegue a destino antes de que pase cierto tiempo. Otra ventaja posible para el segundo es que soporta un esquema de prioridades para el uso de la red.Por estas razones, el CSMA/CD es el preferido para oficinas, mientras que el Token passing es preferido para fábricas.
TRANSMISION DE DATOS
Para permitir la fácil interconexión de un gran número de máquinas, se simplifica al máximo el transmisor, receptor y cableado transmitiendo en forma serie. La norma RS 232 no sirve en este caso, pues contempla esencialmente la comunicación entre 2 equipos, y se complicaría notablemente si se tratara de extrapolar a esta situación. Por lo pronto, mediante un arbitraje adecuado, con sólo dos conductores (ya sea un par trenzado o algún coaxil) es posible comunicar decenas de máquinas.Como ganar el permiso para transmitir demanda un cierto tiempo, no es eficiente transmitir sólo un byte; las redes arman grupos de bytes denominados paquetes. Un paquete lleva los datos precedidos por bytes de sincronización, direcciones tanto del transmisor como del receptor e indicación del formato del paquete (por ej: cantidad de bytes) y termina con bytes para efectuar un CRC (por ej: en Ethernet son 4).Para evitar problemas de interferencia y de circulación de corriente contínua entre máquinas, generalmente los cables están aislados del resto de la computadora por medio transformadores de pulsos. El tipo de conductor viene dado por la elección de la placa de red. Debido al mayor ancho de banda obtenible, las redes que trabajan a mayor velocidad, usan coaxil, y las de menor velocidad, par trenzado. Las redes donde se emplea par trenzado en topología estrella (como StarLAN, IEEE 802.3 1 BASE 5), suelen ofrecer la ventaja de poder aprovechar pares sobrantes del tendido de la instalación telefónica.Si bien lo más habitual es transmitir mediante conductores, hay otras alternativas. Cuando se requieren conexiones a distancias del orden del Km, inmunidad a interferencias, seguridad frente a conexiones clandestinas y total aislación entre equipos, se usan redes basadas en fibra óptica. Otra aplicación posible de la fibra óptica es en enlaces de gran ancho de banda, donde se aprovecha la instalación para transmitir audio y/o video.
PLACAS MAS HABITUALES EN LAN PARA COMPUTADORAS PERSONALES
Ethernet:
Es una red con topología tipo bus, con protocolo CSMA/CD, que trabaja en banda base y es capaz de transmitir a 10 MBit/s, emplea codificación Manchester. Existen versiones tanto con cable de cobre como con fibra óptica. De las versiones por cable existen dos subtipos: Ethernet propiamente dicha (o de cable grueso) y Cheapernet (o Ethernet de cable delgado).La red Ethernet estandar fue desarrollada por Xerox (introducida en 1975) y normalizada por la IEEE como IEEE 802.3 10 BASE 5 (10 Mbit/seg, BASEband y 500 m de alcance).El cable a usar es RG11 de 50 ohm de impedancia característica y 10,16 mm (0,4 ") de diámetro. Los conectores son tipo N (a rosca) con el macho en el cable. Las máquinas se conectan a este cable por medio de transceptores. La vinculación entre la placa de red y el transceptor se realiza mediante un cable terminado en conectores de tipo D de 15 contactos (denominados DIX), teniendo la plaqueta un conector hembra y el transceptor uno macho. En cada extremo del cable, se debe conectar un conector N de terminación (también llamado terminador, terminator) que contiene un resistor de 50 ohm (que es la impedancia característica del cable). Una instalación correcta debe incluir la puesta a tierra de UNO Y SOLO UNO de los terminadores. Debido a la degradación de la relación señal/ruido, la distancia entre los terminadores no debe superar los 500 m (1.640 pies). No se permite conectar dos T usando menos de 2,5 m (8 pies) de cable. Los cables que unen las máquinas con los transceptores pueden tener hasta 50 m (165 pies). En el caso de necesitar armarse un bus más largo, deberá descomponérselo en segmentos de menos de 500 m denominados segmentos troncales. Para integrar segmentos hay varias alternativas: poner repetidores, poner un server con una placa Ethernet por cada segmento o poner en algunas workstations 2 placas y hacer que, aparte de su trabajo normal, funcionen como retransmisores (también se las llama puente).Aún así hay ciertos límites: no puede haber más de 5 segmentos y no pueden sumar más de 2.500 m (8.200 pies). Una limitación adicional es que no puede haber más de 100 máquinas conectadas en un segmento, aunque se cumplan los requisitos de longitud. Un asunto a tener en cuenta es que si se daña el cable, todas las máquinas que dependen de él salen de servicio, por lo que a veces se parte la red por cuestiones de confiabilidad.
Figura 5:En las redes con cable delgado (también llamadas IEEE 802.3 10 BASE 2) se usa como conductor un cable RG58 de 50 ohm (0,2"=5,08 mm de diámetro). En la plaqueta hay un conector BNC hembra al cual se le conecta una T. Los cables que unen máquinas se conectan en las T mediante BNC macho. En cada extremo del cable, se debe conectar un terminador de 50 ohm. Una instalación correcta debe incluir la puesta a tierra de UNO Y SOLO UNO de los terminadores. La distancia entre los terminadores no deben superar los 185 m (607 pies). No se permite conectar dos T usando menos de 0,5 m (1,6 pies) de cable. La T debe conectarse directamente a la placa de red, sin prolongadores. En el caso de necesitar armarse un bus más largo, deberá descomponérselo en segmentos de menos de 185 m. Las alternativas para integrar segmentos son las mismas que en Ethernet estandar. No puede haber más de 5 segmentos en una red y no pueden sumar más de 925 m (3.035 pies). Tampoco puede haber más de 30 máquinas conectadas en un segmento, aunque se cumplan los requisitos de longitud.
Figura 6:La gran mayoría de las redes tipo Ethernet para computadoras personales, son en realidad Cheapernet. Esto se debe a que en Cheapernet se ahorra el costo de los transceptores y el cable cuesta por lo menos 3 veces menos. Por tal motivo, todas las placas de red para computadoras personales traen el conector BNC para Cheapernet pero no todas traen el conector DIX para Ethernet. La red Ethernet tiene, por otra parte la ventaja de permitir troncales más largos y mayor cantidad de máquinas por troncal por lo que es más apropiada para instalaciones importantes. Otra área donde se aplica es en la conexión con redes Ethernet preexistentes (con el software apropiado pueden transferirse archivos aunque tengan distintos sistemas operativos).Si se desea probar un enlace entre dos máquinas, no se pueden conectar directamente pues no tienen terminadores; deben usarse 2 T y 2 terminadores.Se pueden combinar segmentos de Ethernet y Cheapernet no sólo usando puentes o repetidores sino mediante adaptadores BNC - N ya que el cable tiene la misma impedancia y la información se transmite igual (tanto eléctricamente como lógicamente). La construcción de segmentos usando cable de distinto diámetro tiene sentido para cables cuya longitud esté comprendida entre 185 m (el máximo posible con cable delgado) y 500 m (el máximo posible con cable grueso). La longitud máxima de cable delgado (d) utilizable para armar un troncal de longitud L está dada por la fórmula:d=(500 - L) / 3.28. Por ej: si L=300 m, se pueden usar 61 m de cable delgado y 240 del grueso. La interfase con el bus de la PC se puede hacer mediante 8 o 16 bits (generalmente se usan de 8 para las workstations y de 16 en el server). En la placa hay un chip dedicado que maneja las comunicaciones, administra un área de RAM que sirve de buffer de entrada/ salida, etc. La comunicación con el microprocesador involucra, además de las líneas de datos y control usuales, una línea de interrupción (IRQ) y una dirección en el mapa de I/O. Las placas Ethernet vienen preparadas por default en la dirección 300h y usan IRQ3. Debe tenerse cuidado en que no haya conflictos con otras placas: IRQ3 es usada por COM2, COM4, quizás por modems o fax internos. En cambio, la dirección 300h es usada por la placa prototipo de IBM y por placas de adquisición de datos o control fabricadas por terceros, por lo que es raro encontrarlas en máquinas conectadas en red. Con respecto a DMA, Novell desaconseja su uso, aunque las placas que ellos mismos fabrican tienen jumpers para elegir un canal.
ARCnet:
Fue desarrollada por Datapoint e introducida en 1977. Su nombre es la abreviación de Attached Resource Computing network. La no participación en el comité IEEE 802 dio lugar a que ninguna norma 802 la tenga en cuenta. Sin embargo, cuatro factores contribuyeron a hacerla tan popular que es un estandar de facto:1. a partir de 1982, se comenzaron a vender los chips, por lo que aparecieron "segundas fuentes" de esta placa (Davong, Nestar, Standard Microsystems, Tiara y Waterloo entre otros).2. el precio es bastante inferior a Ethernet y Token Ring.3. es muy confiable4. en muchos lugares de EEUU había cableados con coaxil de 93 ohm en estrella provenientes de hosts con terminales IBM 3270. ARCnet permite que al reemplazar las terminales por computadoras el cableado se aproveche. En su versión original, es una red con topología tipo estrella, con protocolo de pasaje de "token" , que trabaja en banda base y es capaz de transmitir a 2,5 MBit/s.La placa ARCnet se conecta con el hub mediante un cable coaxil de 93 ohmRG62. Hay dos tipos de hub: pasivos y activos. Los pasivos consisten en unacaja con 4 entradas vinculadas mediante resistores, de valor tal que si tresentradas cualesquiera están terminadas en su impedancia característica, laimpedancia vista desde la otra entrada también sea la característica. Estaconexión permite adaptar impedancias y evitar reflexiones, pero a costa deuna atenuación alta. Justamente la atenuación limita la distancia máximaentre cada máquina y el hub a 30 m. Un hub activo, aparte de los resistoresde terminación, tiene amplificadores, por lo que se pueden conectar máquinashasta a 600 m del hub. Los hubs activos pueden ser internos (generalmente de4 bocas) o externos (generalmente de 8). Es posible conectar un hub a otropero se deben respetar estas reglas:No se pueden conectar hubs pasivos entre sí.Cualquier entrada no usada en un hub pasivo debe llevar un terminador de 93 ohm.Ningún cable conectado a un hub pasivo puede tener más de 30 m. Un hub activo puede estar conectado a una máquina, a otro hub activo o a uno pasivo.Las bocas no usadas en un hub activo no necesitan terminador, pero es conveniente usarlo.Tanto los enlaces entre dos hubs activos como los efectuados entre hubs activos y máquinas pueden ser de hasta 600 m.Ninguna máquina puede estar a más de 6.000 m (20.000 pies) de otra. No crear ningún lazo.Para efectuar pruebas entre dos máquinas, no es necesario un hub, se las puede conectar directamente pues las placas poseen terminadores internos.En la actualidad se la puede considerar obsoleta.
RED ARCNET EN TOPOLOGIA ESTRELLA
Figura 7:Existen versiones de ARCNet para topología bus y para transmisión por par trenzado, pero no se popularizaron. Tambien se desarrolló una versión denominada "plus" de mayor velocidad de transmisión pero hasta el momento su penetración en el mercado es casi nula.El chip de control de comunicaciones maneja un buffer de 2 KBy (2048 d=800 h). Como ARCnet trabaja con paquetes de longitud fija (508 bytes) y NetWare también (pero de 560 bytes), se requiere transferir dos paquetes ARCnet para transferir un paquete de NetWare (uno de ellos sólo lleva 52 bytes útiles, el resto son 0). La dirección de la RAM del buffer es seleccionable con jumpers. El default es D0000h - D07FFh), normalmente no interfiere con otras direcciones. La placa también ocupa un espacio de 16 By en el mapa de I/O, siendo el default 2E0 - 2EFh un valor que no interfiere. Emplea una línea de IRQ seleccionable, siendo la 2 por default. En las XT no hay problema, pero en las AT coincide con el IRQ generada por el segundo 8259, por lo que debe cambiarse; las opciones son: 3, 4 (ambas pueden interferir con puertas serie) , 5 y 7 (pueden interferir con puertas paralelo). Por último, hay un par de parámetros de "time - out" que deben seleccionarse mediante DIP switches con la restricción de que deben ser iguales en todas las placas.
Token Ring:
Fue desarrollada por IBM y adoptada por IEEE como estandar IEEE 802.5 en 1986. Hay placas compatibles de General Instruments, Proteon, 3Com y Ungermann-Bass. Por definición un "token - ring" consiste en un conjunto de estaciones conectadas en cascada formando un anillo (ring) en el que la información es transferida de una estación activa a la siguiente. Cada estación recibe y regenera los bits que recibe, de forma tal que actúa como repetidor cuando está activa. Cuando la información vuelve a la estación que originó la transmisión, el mensaje es retirado de circulación. La velocidad de transmisión original era de 4 MBit/s, pero hay versiones de 16 Mbit/s. La codificación es Manchester diferencial.Cuando se desea armar una red Token Ring, lo intuitivo sería pensar en un bus unido por sus extremos. Sin embargo, la topología que aparenta esta red es la de una estrella (se la suele describir como "star - wired ring"). Esto se debe a que el anillo está contenido en un dispositivo denominado 8228 Multistation Access Unit (MAU).Las máquinas se conectan a las bocas 1 al 8 del 8228 mediante unos cables llamados adaptadores (pues el conector incluído en la placa es distinto al del 8228) o 'par de lóbulo (lobe pair, el nombre surge de considerar a cada "punta" de la estrella como un lóbulo de ella). Si la red tiene más de 8 puestos, se forma un anillo de 8228 conectando la salida de uno (Ring Output, RO) con la entrada del siguiente (Ring Input, RI). Los 8228 poseen un relevador por cada boca; la estación que se conecta, debe activar el relé para insertarse en el anillo.Hay dos formas de cablear el sistema: "small movable cabling system" y "large nonmovable cabling system". En el primer caso, se tienen los siguientes límites: Hasta 96 estaciones.Hasta 12 unidades 8228.Distancia máxima entre el 8228 y una estación: 45,7 m (150 pies) , a los que hay que sumarle 2,4 m (8 pies) del adaptador.Distancia máxima entre dos 8228: 45, 7 m (150 pies).No pasar el cable por exteriores ni por conductos de ventilación, no exponerlos a más de 75 grados Celsius, ni a interferencia eléctrica.En el segundo caso, se pueden conectar hasta 260 estaciones y 33 8228, pero se usa un montaje físico diferente (ver bibliografía).Figura 8:La transmisión se efectúa mediante dos pares trenzados, pero hay de diversas clases, definidas por IBM con números de tipo. El tipo 1 posee 2 pares AWG 22 con blindaje. Se usa principalmente para conectar MAUs. El tipo 2 ofrece 2 pares AWG 22 blindados y 4 pares AWG 26 sin blindaje; los pares extras son para conectar el teléfono con el mismo cable. El tipo 3 es de 2 pares tipo telefónico sin blindar. Es una alternativa barata al tipo 1. La ventaja de usar cable tipo 3 es que en muchas empresas donde hay centrales telefónicas internas, quedan pares disponibles, por lo que no hay que hacer un nuevo tendido; la desventaja es que se limitan el alcance y la cantidad de dispositivos que se pueden soportar (72 en vez de 255). El tipo 6 consta de 2 pares de cables (no alambres) de AWG 26 sin blindaje; es flexible y se usa para los alargues entre el cable adaptador y el 8228. El cable 9 consta de dos pares de AWG 26 blindados. Tiene menor alcance que el tipo 1 (aprox. 66%) pero es más barato. Todos los cables mencionados hasta acá soportan 16 Mbit/s excepto el 3 que llega sólo a 4 Mbit/s. Por último, el tipo 9 no es un cable sino una fibra óptica de 140 micrones. Soporta hasta 250 Mbit/s. Para ampliar el anillo, se puede usar el 8218 Token - Ring Copper Repeater (repetidor de cobre), llevándolo a 775 m. Otra alternativa es emplear el 8219 Token - Ring Network Optical Fiber Repeater (para fibras ópticas), que posibilita enlaces de hasta 2 km.Hay dos modelos básicos de placas: la Token Ring PC Adapter (para PC, XT, AT, y compatibles) y la Token Ring Adapter/A (TRN/A, para PS/2 Model 50 y superiores). La diferencia entre ambas es, fundamentalmente, que la primera se conecta en un mainboard con bus tipo XT, mientras que la segunda es para un bus MCA (microchannel).La dirección de base en el mapa de I/O es A20h (default); se puede escoger IRQ 2, 3 ó 7 (la 7 se superpone con la primera impresora). Un detalle a tener muy en cuenta es que la Token Ring PC Adapter decodifica 12 bits en I/O y no 10 (como es usual en PC). Por esta causa se debe tener cuidado con el tema de las direcciones fantasma, por ej: A20h se puede superponer con 220h.
Identificación:
Para identificar a las placas involucradas en una comunicación (tanto la que la origina como la que lo recibe), las placas para red tienen una identificación, llamada "de nodo".En las ARCnet, hay un banco de 8 DIP switches, soportando así hasta 255 nodos. No son 256 pues la dirección 0 se reserva para "broadcast" (mensajes que deben ser recibidos por todas las placas simultáneamente). En ARCnet Plus se llega a 2047.En las IEEE 802.x (Ethernet y Token Ring entre otras), cada placa tiene un número de identificación de 48 bits grabado en ROM. Esto permite hasta 281 x 10 ^ 12 identidades distintas. Los fabricantes de placas Ethernet le graban a cada placa que venden una dirección distinta. Para evitar que dos fabricantes le asignen la misma dirección a dos placas, los fabricantes le piden a IEEE que les asigne un rango de direcciones (originalmente este servicio lo hacía Xerox para las Ethernet). La dirección de la placa queda constituída por dos partes: el código de fabricante (suministrado por la IEEE) y el número de serie (suministrado por el fabricante). La dirección de broadcast es "todos 1".
BOOTEO REMOTO
Hay ciertas situaciones donde conviene que una workstation no arranque desde su diskettera o disco rígido sino que cargue el sistema operativo desde el server. Esta operación, denominada booteo o reset remoto, implica incorporarle a la placa una ROM con el código necesario para efectuar esta transferencia. La ROM depende del tipo de placa (Ethernet, ARCnet, etc) y del sistema operativo del server (NetWare, LANtastic, etc).En el caso de NetWare, la ROM de booteo remoto carga el archivo NET$DOS.SYS ubicado en el directorio LOGIN. Este archivo es una imagen del contenido del diskette que se usaría para bootear desde la terminal (si se pudiera), e incluye los archivos ocultos del DOS, el COMMAND.COM, AUTOEXEC.BAT, CONFIG.SYS, otros .SYS necesarios para arrancar, NETX e IPX. Para crear este archivo se graba un diskette tal como se necesitaría para bootear y se corre el programa DOSGEN (contenido en el NetWare). Si, por diferentes razones, no pudiese usarse el mismo NET$DOS.SYS para todas las estaciones, se debe crear un archivo adicional denominado BOOTCONF.SYS que contiene una tabla (en ASCII) vinculando los nombres de los archivos de booteo con las direcciones de las placas. Las placas cuyo dirección no figure en BOOTCONF.SYS bootearán por default del NET$DOS. La dirección de la ROM puede cambiarse mediante jumpers para que no interfiera con la de placas EGA/VGA ni discos rígidos. La ROM ocupa típicamente 2000h (8192d) bytes siendo generalmente una 2764.Para las placas Token - Ring para PC, se debe elegir una dirección para la ROM de booteo aunque no se vaya a conectar ninguna. Debido al bajo costo de disketteras y discos rígidos, podemos considerarlas en desuso.
DISTINTAS VERSIONES DE NETWARE
Históricamente, Novell desarrolló tanto software como hardware. Los primeros servers que vendía eran basados en microprocesadores Motorola. Al migrar a Intel, sus sistemas operativos incorporan en su denominación la identificación del procesador para el que fueron escritos, por ej: NetWare 286 o NetWare 386. Con el transcurso del tiempo, fue abandonando la producción de hardware para concentrarse en el software. Su éxito se basa, entre otras cosas a no utilizar el software para vender el hardware sino darle soporte a hardware de distintos proveedores para vender software. Para adaptarse mejor a los tamaños de las redes en los que se instalará, cada sistema operativo tiene distintas cantidades límites de usuarios, requisitos en el servidor y prestaciones adicionales. A partir de la 2.20 todas las versiones incluyen las SFT I y II, aunque es un requisito indispensable utilizar un "servidor dedicado". También existe una versión llamada SFT III que es el máximo nivel de seguridad posible en una red NetWare, utiliza una técnica que duplica automáticamente la información en un servidor espejo; éste es accedido por los usuarios únicamente ante una falla en el servidor principal.Actualmente se comercializan las siguientes versiones:Netware 3.12 en sus versiones para 5, 10, 50, 100 y 250 usuarios. Permite ser instalado en AT-386 como servidor dedicado únicamente.Netware 4.1 en sus versiones de 10, 20, 50, 100, 250, 500 y 1000 usuarios. Todas las versiones requieren instalación como "server dedicado" y demandan como configuración mínima un equipo basado en el 80386 o superior. Los requisitos de memoria del servidor dependen del tipo de instalación efectuada y se analizarán en detalle en el capítulo siguiente.
DIAGRAMACION DE UNA RED.
Antes de proceder a la instalación de una red, se la debe planificar. Si bien parece un paso obvio, muchas veces es salteado, con el resultado de que la red queda conformada por un conjunto de parches. Otro punto muy vinculado con éste, y también omitido, es el de documentar la instalación efectuada. Por empezar, la red debe tener como propósito por lo menos alguno de los siguientes (ya mencionados en el capítulo anterior):-Mantener bases de datos actualizadas instantáneamente y accesibles desde distintos puntos.-Facilitar la transferencia de archivos entre miembros de un grupo de trabajo.-Compartir periféricos caros (impresoras laser, plotters, discos ópticos, etc)-Bajar el costo del software comprando licencias de uso múltiple en vez de muchas individuales.-Mantener versiones actualizadas y coherentes del software. -Facilitar la copia de respaldo de los datos. -Correo electrónico.-Comunicarse con otras redes (bridge).Mantener usuarios remotos via modem.Si las estaciones que forman la red poseen ROM de booteo pueden carecer de diskettera, con lo que además se logra:-Evitar el uso ilegal del software.-Evitar el ingreso de virus.-Evitar el hurto de información.-Facilita el acceso al sistema para usuarios inexpertos, ya que ingresadirectamente a ejecutar sus aplicaciones.En función de los objetivos elegidos los pasos a seguir son:1) Determinar los usuarios y sus tareas. Esto incluye también el clasificar a los usuarios según aptitudes, nivel de seguridad en el que se desempeñarán y preveer si hay que capacitarlos. Cuestiones de seguridad y/o de baja capacitación pueden hacer recomendable el uso de estaciones sin disketteras y que arranquen desde el server.2) Seleccionar los programas de aplicación a usar en cada estación. En este punto se elije la versión y cuántas licencias de uso hacen falta. Hay que asesorarse bien en cuanto al software ya que hay programas que tienen versiones especiales para red. Si se opta por programas multiusuario, aparte del descuento por licencia múltiple, ocupan menos lugar en el disco rígido. 3) También se decide dónde se los instala: algunos pueden ir en las estaciones, otros en el server. En general, conviene colocarlos todos en el server aunque haya algunos que sean usados por un sólo usuario, ya que le brinda la posibilidad de acceder al mismo desde otras estaciones. Un caso muy frecuente es el de los puntos de venta. En estos casos conviene elegir programas que sean muy fáciles de usar, ya que el operador pasará casi todo el tiempo atendiendo al cliente. Si se opta por un programa a medida, se lo deberá especificar y probar con sumo cuidado, tratando además que se pueda reconfigurar la mayor cantidad de cosas posibles sin intervención del programador. Siempre que se trabaje en redes, los costos e inconvenientes que implique una reprogramación se multiplican por la cantidad de puestos afectados. Entre los programas a instalar, conviene tener un antivirus. 4) El programa de aplicación también define el sistema operativo que correrá en la estación.5) En base a los requerimientos de software se dimensionan las estaciones de trabajo, ya que deben funcionar como soporte del programa. El dimensionado de las estaciones de trabajo incluye, entre otros tópicos:tipo y velocidad del procesador.cantidad y tipo de memoria (base, extendida, expandida).Tipo de placa de video.Si llevan disco rígido.Si llevan diskettera (y de que formato).6) En función de la cantidad de usuarios y de los servicios que deba brindar el sistema operativo de red se procede a seleccionar el mismo. Se debe considerar en este punto:Si la red será basada en server o será entre pares.Si el server correrá en modo dedicado o no.Que para grandes bases de datos conviene la versión SFT con TTS, en casos extremos, se pueden usar servers duplicados. Otras posibilidades son el espejado y el "duplexing". La futura expansión del sistema, ya que una versión para muchos más usuarios es innecesariamente cara, pero comprar "justo" y hacer "upgrades" periódicos puede ser más caro y ciertamente es más molesto. si se correrá algún NLM.(Netware Loadable Module) 7) Tal como ocurre con las estaciones, el sistema operativo a correr decide el hardware mínimo para el server. Debido a que en una red hay muchas más estaciones que servers, las estaciones se dimensionan "justas" mientras que el server se suele sobredimensionar. Al dimensionar el server se deciden:tipo y velocidad del procesador. (mínimo un CPU 386 con 4Mb. de ram)cantidad de memoria (depende de la capacidad del disco rígido y otroscomponentes)Tipo de placa de video. (no es relevante)Cantidad y capacidad de los discos rígidosFormato de la diskettera.Necesidad de dispositivos tales como CD-ROM, unidades de cintas, etc.Cantidad de puertas paralelo y serie.8) Hay que decidir una estrategia de backup. En caso de decidirse por una cinta o un DAT, verificar que el software sea "NetWare compatible" y ver en qué máquina se la ubica. 9) Hacer un plano con la distribución de máquinas, donde figuren las distancias entre ellas.10) En función del tráfico estimado y de las distancias a cubrir, se decide el tipo de placas de red y el cableado. Esto implica:selección de la tecnología: Ethernet, ARCnet, Token ring u otras. Diagrama de cableado.Si como consecuencia del tráfico o de violaciones de las distancias máximas conviene hacer puentes. En este caso se puede elegir entre uno interno o uno externo. tipo de bus al que se conectarán las placas de red: ISA de 8 o 16 bits, EISA, MCA o PCI.Si se requiere una placa de red inteligente o con un gran buffer de comunicaciones. (especialmente en el server de una red con mucho tráfico). ROMs de "booteo remoto" para las estaciones que arranquen desde el server. 11) Determinar los equipos (como mínimo los servers, bridges y gateways) que tendrán fuente de alimentación ininterrumpible (UPS). Para ellos, se debe preveer si se usará algún sistema automático de detección de falta de electricidad (hay versiones con placa adaptadora y otros por puerta serie).Novell contempla algunas de estas placas, las demás deben contar con un software provisto por el fabricante. 12) Aprovechando que se van a tender los cables de la red, es el momento de revisar la instalación eléctrica. En particular, es necesario asegurarse que los tomacorrientes tengan toma de tierra tanto para las computadoras como para los monitores e impresoras asociados. (Parece tonto, pero es muy importante, de esa manera evitaran "las patadas...") 13) Recién en este momento hacer la compra e instalación del hardware. Verificar el buen funcionamiento individual de las máquinas. 14) Documentar el hardware existente. Esto incluye tres aspectos:descripción completa de la configuración de cada máquina, que abarque no sólo los nombres de las placas sino también la posición de los jumpers y el setup del mainboard.Plano de los cableados de la red, detallando los recorridos de los cables y las longitudes de los tramos afectados.Documentación comercial asociada: vendedor, plazo de garantía, TE del servicio técnico, etc, de cada una de las partes. (Podría generarse una base de datos para facilitar esta tarea)15) Proceder a instalar el software. Como se verá oportunamente, el sistema operativo de red pregunta datos sobre la controladora de disco y sobre la placa de red (direcciones, interrupciones, DMA, etc) por lo que conviene haber hecho a fondo la documentación que se sugiere en el punto 14. 16) Verificar que la red funcione, leyendo y escribiendo archivos desde las estaciones.17) En base a los programas a instalar en el server y la lista de usuarios autorizados, se deberá diagramar el árbol de directorios y estudiar el tema de permisos y atributos de archivos. Es fundamental documentarlo correctamente y actualizarlo en forma periódica. 18) Instalar el software en el server. 19) Crear los usuarios y grupos, dotarlos de permisos, editar sus secuencias de conexión etc.20) Prueba del sistema completo. 21) En los casos en los que se autorice a los usuarios a enviarse mensajes por la red, o que haya más de un server, se deberá dotar a los usuarios de una "guía" con los nombres de los usuarios y sus estaciones.
INSTALACION DEL NETWARE
La instalación del Netware es muchas veces considerada como la "instalación de un software solamente" y es sobre este punto donde normalmente se producen la mayoría de los problemas. Casi siempre se omite el chequeo del hardware asociado (ya sea server o terminales) para ver si es apto para trabajar con Netware.En el futuro es muy probable que se impongan las placas "inalámbricas, por ahora muy costosas, que evitarían los posibles trastornos ocasionados por el cableado (siempre y cuando se reglamente debidamente el espectro de frcuencias para comunicaciones).En definitiva, es aconsejable tener siempre en cuenta, (principalmente para las PC compatibles), que en la práctica es mucho más sencillo "acomodar" las placas de red que otras placas presentes en el equipo, ya que muchas veces se hace dificil recuperar los manuales de las demás placas, ya sea por haberse extraviado o por traspapelarse.Otra norma importante antes de comenzar la instalación es efectuar una copia de seguridad de los diskettes de Netware. Esto es recomendado por el proveedor, a pesar que a diferencia de las versiones anteriores que durante la instalación escribían información en algunos de los diskettes; en Netware 3.1X dichos diskettes son leídos y los drivers copiados al disco del servidor. Novell recomienda hacer la copia de los diskettes con el programa del DOS "DISKCOPY". De cualquier forma, hoy en día sería deseable adquirir el software en CD, debido a las muchas ventajas que esto implica.Para aquellas instalaciones en las que el "server" es un equipo nuevo, es conveniente que el disco rígido no sea formateado bajo DOS en su totalidad; bastará con realizar una pequeña partición (25 Mb. son suficientes) para cargar el DOS y algunos archivos necesarios para el correcto arranque del servidor de la red y permitir futuras actualizaciones del mismo . Si se utilizan discos rígidos tales como los de tecnologías SCSI o ESDI se hace necesario preparar otro diskette con los drivers provistos por el fabricante de la controladora de disco (generalmente leyendo en un archivo "readme" explica que drivers utilizar para cada caso).Puede suceder también que la placa de red instalada no sea 100 % compatible con la placa Novell; eso no es un problema, ya que con las placas de red suelen venir uno o más diskettes con drivers para diferentes aplicaciones, leer en el manual de la placa o buscar en el diskette algún archivo "readme" en donde se indiquen cuales drivers hay que copiar a otro diskette llamado normalmente LAN_DRV_XXX donde X son números o letras indicados por el proveedor.Finalmente, y aunque esto pueda sonar extraño, conviene tener la certeza que el disco o los discos instalados en el server estén libres de virus tales como los muy conocidos STONED, MICHELANGELO u otros virus del tipo BOOT, ya que a pesar que el servidor no es un equipo en el que se efectúen I/O de datos mediante diskettes, el virus puede estar en la copia de instalación del DOS; esto es muy importante ya que dichos virus no atacan las particiones Netware en forma directa pero lo hacen en forma indirecta al atacar la partición de arranque (hecha en DOS) la que al perderse ante un virus que se activa por fecha como el anteriormente nombrado.
Instalación en el server:
A continuación se procede a describir las rutinas de instalación suponiendo que ya se creó una partición DOS igual o mayor a 5 Mb. de extensión. Colocar el diskette SYSTEM-2 y copiar el archivo ISADISK.DSK al disco rígido o el driver que provea el proveedor para la placa controladora en caso en que sea especial (dispositivos ESDI, SCSI y algunos discos IDE).Colocar el diskette SYSTEM-1 y copiar el módulo de instalación INSTALL.NLM y copiar el programa SERVER.EXE.Ejecutar el programa SERVER.EXE desde el disco rígido.Se visualizará en la pantalla la velocidad relativa del procesador del equipo, habrá que ingresar el nombre que se desee dar al servidor y luego se informará la cantidad de memoria disponible o detectada.Luego de esos pasos se verá en la pantalla el "prompt" que es el símbolo del "dos puntos" y habrá que tipear primero "load c:\isadisk o el driver para disco rígido que sea necesario y luego "load c:\install (o mencionar la ruta de acceso completa si se creó un directorio "red" al copiar los archivos mencionados anteriormente.Si se efectuaron los pasos descriptos en forma correcta, veremos en la pantalla un menú con ventanas desplegables llamado Installation Options con cuatro opciones, las que hay que ir seleccionando por orden. La primera de ellas es Disk OptionsDisk Options: esta ventana contiene 5 opciones;Format (opcional) permite el formateo de discos rígidos en bajo nivel, dicha opción puede saltearse para discos nuevos o "Netware Ready" pero puede utilizarse para verificar el correcto funcionamiento de aquellos o de controladoras de los que se tienen dudas sobre su correcto funcionamiento; o cunado se reinstala una red en discos usados en anteriores servidores.Partition Tables: permite crear o borrar una partición Netware y modificar el área de redireccionamiento, normalmente es un 2% del espacio total del disco que se reserva para redireccionar bloques defectuosos y que se explicará más profundamente en otros capítulos. Al crear la partición Netware se observará además la partición DOS anteriormente creada. Luego de crearla, se debe presionar "ESC" para volver al menú anterior. Si se pretende utilizar el sistema de "Mirroring" o espejado de discos se deberá seleccionar dicha opción en el menú, previamente se tuvieron que crear las particiones correspondientes y cuando aparezca la pantalla "Drive Mirroring Status" seleccionar la unidad primaria; presionar luego la tecla "INSERT" en el menú "Mirrored Netware Partitions" para poder seleccionar después la unidad secundaria en la pantalla "Available Partitions". De esta forma las particiones quedarán parejas para la duplicación.Nota: el concepto de espejado consiste en que la segunda unidad de disco duplique los datos que se ingresan en la primera, para que entre en acción automáticamente si la primer unidad de disco sufre un desperfecto. El segundo disco rígido debe tener una capacidad igual o mayor al que el primero; debido a que el espacio sobrante en caso que sea mayor no se utiliza y para que no se produzcan problemas de incompatibilidad en la práctica se suelen utilizar dos discos de la misma marca y modelo.Volume Options: al ingresar aparecerá un cartel "Volumes" y deberá presionar "INSERT". En caso de haber más de una unidad disponible seleccione la unidad en que se encontrará el volumen deseado. Hecho esto, en la pantalla aparecerá "New Volume Information"El primer volumen deberá tener por nombre "SYS" y se lo define así por omisión; no debe cambiarse. Lo que se podrá o no cambiar es el tamaño de los "bloques" cuyos equivalentes en DOS son los "clusters" y el tamaño de los segmentos de volumen, que se utilizan para reservar espacio para varios volúmenes en un mismo disco o bien para distribuir un solo volumen en varios discos.Tener en cuenta que si se elige un tamaño de bloque grande se produce un efecto no deseado si durante el uso de la red se generan archivos pequeños en gran cantidad ya que por ejemplo si genero con mis programas de aplicación muchos archivos de 100 Bytes, cada uno de ellos ocupará un bloque de 4 KBytes en el mejor de los casos amplificándose dicho efecto a medida que selecciono tamaños mayores de bloque y trayendo como consecuencia una gran cantidad de espacio en disco no utilizado.Como contrapartida con tamaños de bloque grandes el usuario accede en forma mucho más eficiente a la instalación ya que accede a los datos en una sola operación en lugar de varias operaciones como sería necesario con bloques de tamaño pequeño.El criterio para seleccionar el tamaño de los bloques en forma práctica se basa en el tipo de tareas que se desempeñarán en la red ya que si se accede a bases de datos conviene que los bloques sean grandes y si se utilizan aplicaciones que posean o generen archivos pequeños conviene que los bloques sean pequeños por lo que muchas veces se generan 2 volúmenes con tamaños de bloque diferentes para aprovechar el disco rígido en forma eficiente. Si se quiere este tema podría plantearse como un defecto o una limitación, que afortunadamente se solucionó en las versiones más recientes de Netware que son las versiones 4.0 y 4.1 en las que los bloques pueden subdividirse o "sub-alocarse" para alojar a los archivos. Antes de abandonar la ventana "New Volume information" deberá seleccionar la opción "Status" y "montar" el volumen; ya que aunque estén definidos, Netware no los ha abierto para poder ser utilizados. Mediante la orden "Mount" se monta un volumen y por medio de"Mount All" se montan todos los existentes.System Options: este submenú se utiliza también para reconfigurar archivos de arranque del servidor y para concluir la instalación. Las opciones disponibles son:Copy System and Public Files: como su nombre lo indica es la que crea los directorios y termina de instalar los comandos básicos de la red.Create Autoexec.ncf: es el equivalente al "Autoexec.sys" de versiones anteriores, su función es similar a la del "Autoexec.bat del DOS (valga la comparación), incluye datos como por ejemplo el nombre del server, el número de ipx interno que sirve para identificar al servidor (es un número de hasta 8 cifras decimales) y que debe ser distinto en cada servidor si se los desea comunicar; la configuración de la/las placas de red del equipo, declarar el número de "net" que debe ser igual para poder comunicar servidores entre sí y otros comandos que pueden agregarse para un activado automático de procesos o bien ser ejecutados desde el teclado del servidor y que se llaman comandos de consola; dichos comandos serán vistos en próximos capítulos.Create Startup.ncf: este archivo es el que especifica al Netware el tipo de disco o controladora que posee el equipo. Es leído por el programa "Server.exe" (en la partición DOS o el diskette de arranque ya que de otra forma Netware no sabe que disco tiene instalado el servidor) antes del "Autoexec.ncf" que está instalado dentro de la partición Netware.Edit Autoexec.ncf: permite efectuar modificaciones como así también agregar comandos, seteos y/o carga de módulos en forma automática. principal.Basic Installation: como su nombre lo indica es la instalación más sencilla de ejecutar, ya que es prácticamente automática, solamente hay que ingresar ciertos datos como por ejemplo el nombre del Server, tipo y configuración de la placa de red instalada, tipo y configuración del disco rígido utilizado.Edit Startup.ncf: que como ya dijimos tiene al drive "A" o la partición booteable DOS "C" como ubicaciones posibles.Return to Main Menu: para volver al menú principal (se puede también volver con "ESC").Finalizada la instalación puede probarse la conección al servidor desde alguna terminal para verificar que todo esté correcto.Para finalizar, salir del programa de instalación con "Exit" en el menú principal y convendrá bajar el servidor y volverlo a reiniciar. Para cumplir con dicho requisito se deberá:Tipear "down" en el promptTipear "exit" luego que el servidor muestre en pantalla el mensaje que entre otras cosas indica que el servidor ha cerrado los archivos pues ha sido dado de baja.Con un editor de textos (por ejemplo el "Edit" del DOS) generar en el disco rígido "C" o en el diskette de arranque un "autoexec.bat" que contenga por ejemplo:@echo off path c:\dos;c:\red (si se creó un directorio para guardar los archivos de arranque) serverPara cualquiera de las instalaciones descriptas, conviene aclarar que a pesar de culminar la instalación general del soft; el sistema no seencuentra listo para funcionar, ya que falta "la puesta a punto" del mismo, que se irá describiendo en los próximos capítulos.






aland lopez calvo
adan navarrete cariño
agustin iturbide jimenez
natiel luna morales

0 Comments:

Post a Comment

<< Home